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Application of the Transient Hot-Wire Method to 
Gases at Low Pressures 
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The need to determine the thermal conductivity of non-ozone-depleting 
refrigerants implies measurements at pressures below 10 bar in the gaseous 
phase. In order to apply the transient hot-wire method with proven accuracy to 
this state, possible sources of systematic errors in the measurements have been 
carefully assessed theoretically and experimentally. The influence of the finite 
heat capacity of the hot wire and of the isothermal outer wall of the cell have 
been idcntified to affect the measurements substantially. An improved correction 
method to account for the wire heat capacity is presented, as well as criteria to 
choose the parameters in the experiments in order to avoid errors due to the 
outer boundary and due to the finite wire length. The results are presented in 
dimensionless quantities, and as an example, they are discussed for argon. 

KEY W O R D S :  argon;  low pressure; refrigerants: thermal  conductivi ty;  

transient  hot-wire method.  

!. I N T R O D U C T I O N  

The  the rma l  c o n d u c t i v i t y  in the l imit  of  zero  dens i ty  con t a in s  mos t  of  the 

t e m p e r a t u r e  d e p e n d e n c e  of  the fluid region,  as expe r i ence  with  the res idual  

concep t  shows  [ 1 ~ , ] .  There fo re ,  a ccu ra t e  m e a s u r e m e n t s  in the gas  phase  

are crucia l  for the ent i re  t h e r m a l - c o n d u c t i v i t y  surface.  T h e  i m p o r t a n c e  of  

such e x p e r i m e n t s  just if ies a n o t h e r  assessment  of  e r ro rs  w h e n  the t rans ien t  
ho t -wi re  m e t h o d  at low pressures  is used. 

T h e  t rans ien t  ho t -wi re  m e t h o d  is widely  used to d e t e r m i n e  t he rma l  

conduc t iv i t i e s  of  gases and  l iquids  with an  accu racy  d o w n  to + 0 . 3 %  [5-1. 

Yet inves t iga t ions  in the gas phase  in the range  be low 1 0 b a r  have  been 

avo ided  so far because  expe r imen t s  ind ica ted  a loss of  accuracy .  M o r e -  
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over, in supercritical gases such as argon, nitrogen, and oxygen, the 
measurements at low pressures contained information which could be sub- 
stituted by a linear extrapolation of the thermal conductivity measured at 
the same temperature but at higher pressures I-2, 3, 6]. This procedure fails 
for refrigerants, because the technically interesting range is at subcritical 
temperatures, where the saturation line imposes an upper limit to the 
pressure, which is partly below 10 bar. The need to investigate refrigerants 
motivates this paper. Argon was chosen as the sample fluid because its 
behavior is well-known from kinetic theory. 

Former investigations suspected the compression work to cause an 
error at low pressures [7].  According to a recent extensive analytical and 
numerical study [8],  the magnitude of the compression work is negligibly 
small. In this paper detailed measurements of the transient temperature rise 
at low and high pressures over an extended time interval are presented in 
order to describe the experimental phenomena. Three error sources are 
employed to explain the behavior: the influence of the isothermal outer 
boundary, of the axial end effects, and of the heat capacity of the hot wire. 

2. EFFECTS AT T H E  O U T E R  B OUNDAR Y 

The working equation for the transient hot-wire method was derived 
assuming a line source in an incompressible fluid of infinite extent and 
constant physical properties [-9]. The temperature rise ,JTid at any time t 
at the wire surface r =  r,,., 

(t ( 4 a t )  
A Tid(r,,, , t)  = ~ in \Cr,,.,,/ ( 1 ) 

depends linearly on in(t) with the slope 0/4n2, where ~/stands for the heat 
generated per unit length, 2 for the thermal conductivity; and a for the 
thermal diffusivity, and C =  1.7811 is derived from the Euler constant. 
Any deviation from the linear relationship indicates error sources in the 
experiments. In practice, the line source is approximated by a very thin 
metallic wire, which is suspended in a hollow cylinder, the ceil. The 
characteristic data for our experimental set up are as follows. 

Wire radius: 
Cell radius: 
Time interval: 
Sampling rate: 
Temperature rise: 

rw = 4.0 ~tm 
r c = 6.0 mm 
t =0.002 s . - .  1 s 

f = 303 Hz 
A T ( t =  l s )=  2 K 

The temperature gradient at the surface of the wire is very steep, therefore, 
the temperature rise affects, in most cases, only the fluid close to the wire. 
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The higher the thermal diffusivity of the fluid, however, the more the tem- 
perature field extends in the radial direction. In fact, the thermal diffusivity 
of a gas is inversely proportional to the pressure and rises strongly at low 
pressures as Fig. 1 shows for argon at the temperatures 275, 320, and 
380 K. The thermal diffusivity was calculated as a=A/(pcp} using the 
thermal conductivity 2 from measurements 1-10], and the density p and the 
isobaric specific heat capacity cp from an equation of state [11]. The 
higher the temperature of the gas, the greater is the thermal diffusivity at 
a given pressure, and the influence of the outer boundary grows. 

When the transient temperature field expands radially toward the 
isothermal wall of the measurement cell, a steady state can be reached for 
sufficient long times. In fact, this is the principle of the steady-state hot-wire 
method. The temperature in the steady-state zlT~ depends on the heat 
generation and the thermal conductivity as well as on the radius of the wire 
and the cell I-9], 

zlT~ = ~--2n2 In (2) 
\ r . ,v / 

In order to investigate the behavior at low pressures we measured the tem- 
perature rise over an extended time interval of 10 s for three pressures in 
argon at 320 K, which are plotted in Fig. 2. At first there is a linear increase 
in the temperature-versus-logarithmic time relationship for all three runs, 
followed by a transition region, and then a steady state is observed. The 
measured temperature rises (symbols) are compared with a fit of the linear 
region (lines). For argon at 5 bar (circles) and at 50 bar (crosses) the trans- 
ition starts outside the usually evaluated time interval of 1 s. In argon at 
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Fig. 2. Measured temperature rises (symbols} at 
three pressures in argon at 320 K compared with 
the linear fit of the region up to 1 s (solid lines} and 
with the fit of the truly linear region at 2 bar 
Idashed line}. 

2 bar (squares) the beginning of the transition to constant  temperature falls 
into the time interval of a transient measurement. The slope of the usually 
evaluated region up to 1 s (solid line) is lower than in the truly linear 
region, which is denoted by the dashed line in Fig. 2. Thus, the thermal 
conductivity, which is inversely proport ional  to the slope, would appear  
greater. Indeed, a higher thermal conductivity at low pressures was 
observed in our  experiments with refrigerants, nitrogen and argon. The 
upper curve in Fig. 2 denotes the experiment at 50 bar (crosses). The linear 
region is followed by a maximum in temperature and then there is a decline. 
At high pressures we obviously have a different behavior at long times, 
which is discussed later. The three runs can be compared better when only 
the deviations from the linear fit are plotted lineary versus time as shown 
in Fig. 3. The zero line denotes the linear region. For  the 2-bar measure- 
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Fig. 3. Deviation from the straight-line fit in argon at 
different pressures versus time to illustrate the influence of the 
outer boundary: experiments (symbols) compared with the 
theory (solid line, 2 bar; dashed line, 5 bar). 

ment (squares) a small curvature can be identified even before the trans- 
ition. The transition is said to start where deviations are greater than 2 mK 
or 0.1% of the temperature rise, which is at 0.64 s. For 5 bar (circles) the 
linear region is perfect and at 1.55 s the measured temperature rises deviate 
markedly from the fit, whereas for 50 bar (crosses) a systematic departure 
occurs at 1.8 s. The lines are discussed in the next section. The lower the 
pressure, the earlier a deviation from the linear region is detected. The 
trend is consistent with the influence of the outer boundary due to growing 
thermal diffusivity. 

The tools to calculate the temperature rise considering an isothermal 
outer boundary are listed in a comprehensive study by Healy et al. r9] ,  
and we use their results. The exact solution has to be evaluated numerically 
1,-123, but for the chosen wire and cell diameter and the time scale 
employed in the experiments, a series expansion 1-13"1 is recommended. 
We checked it with regard to the low-pressure properties, and indeed, it 
approximates the exact solution very well and is easier to handle. The tem- 
perature rise at the wire surface in the transition region is 1-9] 

0 rc Z exp(-g~,  Fol[nYo(g,,)]" (3) AT(rw, t )=~  2 2In --,,=l 

The first term in parentheses denotes the steady-state temperature; the 
summation term describes the time-dependent transition using the Fourier 
number Fo 

Fo = at/r~, (4) 
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the Bessel series Yo, and the roots g,, of the Bessei series Jo(g,,) = 0 [9, 13]. 
Equation (3) holds under the assumption that r,,, g,,/r¢ ~ 1, which is fulfilled 
for small eigenvalues g,,. One can show [13 ] that for small eigenvalues the 
term r,,.g,,/rc is of the order 10 - 4  to ]0 3. The results generated with 
Eq. (3) for two argon runs are included in Fig. 3 as lines. For 2 bar (solid) 
and 5 bar (dashed) the calculated deviation from the straight-line fit is 
slightly smaller than the measured one. It is, however, noteworthy that the 
outer boundary influence predicts the changeover within the uncertainty of 
the experiments. For 50 bar the calculated changeover due to the outer 
boundary is after 20 s and therefore not visible in Fig. 3. The transition to 
steady state at such high pressures is due to natural convection rather than 
to the outer boundary. 

From the comparison it can be concluded that the behavior at low 
pressures can be explained with the isothermal boundary in the radial 
direction. The outer boundary correction derived from Eq. (3) by Healy et 
al. [9]  is applicable to allow a modest extension of the linear range, and 
we support their recommendation that it should not amount to more than 
0.02 K or 1% of the temperature rise. However, we feel that measurements 
become less reliable at low pressures when a large part of the measured 
temperature rise has to be corrected, at short times due to the heat capacity 
of the hot wire as discussed in the next section and at longer times due to 
the outer boundary influence. Therefore, we propose a more rigorous 
design criterion compared with that of Healy et ai. to avoid any correction 
at all. For existing instruments which are not designed for experiments at 
low pressures, we derive the limit in pressure, where the outer boundary 
influence can be neglected altogether. 

From Eq. (3) the dimensionless difference 6Ts of the wire temperature 
and the steady-state temperature can be derived, which depends only on 
the Fourier number 

6T~(Fo) = 4rt2 ,JT(r,,. t)/~l - 2 ln( rJ r~)  = - ~ exp( -g'-.Fo)[nYo(g,.)] '-  
n =  1 

(5) 

The deviation from steady-state fiTs is plotted in Fig. 4 versus the Fourier 
number on a logarithmic scale. At small Fourier numbers it shows a linear 
increase, then there is a change in slope and the transition to zero deviation 
from steady state. The linear dependence is denoted by the dimensionless 
difference of ideal temperature rise and steady-state temperature derived 
from Eqs. (1) and (2), 

6Tid = 4n2 ATid/O -- 2 ln(rc/rw) = ln(4 Fo/C) (6) 
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Fig. 4. The transition to steady state due to the outer boundary in dimensionless 
parameters versus Fourier number and comparison with ideal temperature rise and 
limit in Fo according to Healy et al. [9].  

illustrated as a dashed line in Fig. 4. The design criterion of Healy et al. 
[9]  is the Fourier number Foh~ = C/4 = 0.445, where the linear increasing 
ideal temperature is as high as the steady-state temperature. It is shown by 
the vertical dotted line in Fig. 4 and already falls into the changeover and 
makes a small correction necessary. There is no difference between the solid 
and the dashed line below the limiting Fourier number 

FOil m ~< 0 .20  (7) 

which means that the influence of the outer boundary is less than 0.1% of 
the temperature rise and can be safely neglected. For an existing instrument 
with a given cell radius, this criterion leads to an upper limit in thermal 
diffusivity a~< FOrum r~/t and therefore to a lower pressure limit. For our 
instrument we obtain a~<7.2x 10 6 m _~.s J, corresponding to a pressure 
p> /2 .6ba r  at 275K, p l>3 .4ba r  at 320K, and p>~4.7bar  at 380K in 
argon. 

If a new instrument is to be designed, the cell radius can be deter- 
mined with the aid of Eq. (7), so that there is a negligible influence of the 
outer boundary even at low pressures; for example, a good measurement at 
l bar and 380 K in argon with a =  3.3 x l0 -5 m- ' . s -~  would require a cell 
radius of 13 mm. 

The low-pressure results in refrigerants of several transient hot-wire 
instruments with different cell sizes have been compared. The instrument at 
NIST, Boulder, Colorado, with r e = 4  mm shows a pronounced apparent 
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increase in 2 at higher temperatures [14], our instrument with r~ = 6 mm 
showed an apparent increase to a lesser extent, and the apparatus of Gross 
et al. [15] with ,%= 13.5mm did not show any increase at all. This 
observation supports the findings in this paper. 

3. HEAT-CAPACITY CORRECTION 

The energy supplied to the hot wire is initially used to heat up the 
wire itself, and is not transfered to the fluid. Therefore, the measured 
temperature rise at the beginning of the transient heating is lower than 
predicted from the model. The finite heat capacity of the wire has always 
caused the largest correction in the transient hot-wire method. In turn, very 
thin wires must be used. The finest wires available and suitable for the 
technique are made of platinum. The magnitude of the correction increases 
the lower the density of the fluid, which may be expressed by the ratio ~t, 

= 2pcp/(pc),, (8) 

of the heat capacity per unit volume of the fluid to that of the wire [-12]. 
The ratio =t for a gas is lower than for a liquid. In gases at low pressures 
the approximate heat capacity correction given by Healy et ai. [9]  exceeds 
the maximal recommended magnitude of about 1% in temperature rise, 
and an error of more than 0.1% in A T would be introduced. To maintain 
a small uncertainty even when the correction amounts to about 3 % of the 
temperature rise, the correction given by the above-mentioned authors was 
modified. 

The exact solution for the coupled system of wire and fluid is given by 
Carslaw and Jaeger [-12] and reads, for r = r , , ,  

~ct 1 fo- exp(ut) Ko(rwp) 
dT(r~., t) }--xn), 2rtiJ .,_ t-~ r~./12Ko(rwp)+ctrwltKt(rwlt) du (9) 

where ~2 = u/a. It contains the Bessel series Ko and K~ as an integrand and 
can be evaluated only numerically. For the parameters of a hot-wire instru- 
ment, a series expansion [,12] is possible which leads to an approximate 
analytical expression. We employed one more term of the both Bessei series 
than before, 

Ko(rw/.z) = - In ( ~ - C - )  + (~-~)2  { 1 - In ( ~ )  } 
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( rw l ,  C '~(rw/J)  2 (,'..I,) 4] 

(rw'U)2{ l + 5 ( r ' ~ # , z } 4  ,11) 

In the integrand we kept terms up to r~ and ~-" for the series expansion 
and conducted a termwise inverse Laplace transformation. The following 
modified formula for the heat-capacity correction was derived: 

~T, 4~ '~ [(!2o, _ ,)0°'In ,~C~- ' - ~  ~ - - ~  + ,~ ,~:_, 2~2~2 "-~')  

4 ° , ( + ~ , ~ _ ~ , ) + ~ , _ ! )  ~ , ,~, '% In ~ 1 3,'~, / 2/,in 4at "~ 2] 
\ , ;c)  J 8at r;..C ~- 

The first line is identical to the correction of Healy et al. [9]  for a uniform 
temperature in a wire cross section. 

The modified formula was compared with the numerically evaluated 
exact solution of Eq. (9) and the correction given by Healy as plotted in 
Fig. 5 for argon at 5 bar and 320 K. As expected the influence of the heat 
capacity of the wire is large at small times and decreases quickly. The 
modified formula (short-dashed line) is much closer to the exact solution 
(solid line) than the correction of Healy (long-dashed line) The error in 
the temperature rise is smaller than 0.1% at times above 50 ms. The new 
equation allows evaluation of the temperature rise starting at 50 ms instead 
of the previous 200 ms, which assures a sufficiently long time interval for 
evaluation. 

012 
\ exod 

g 10 \ \  . . . .  modified Appraxfmahan 
OO8-X~ - - - -  Heoly Approximation 

. ,, ',,, 
006 

004 

, , . ~  .... 

000 -2 Z 4 6 8104 ~ 4 6 8 I0 ° 

l ime, s 

Fig. 5. Comparison of approximations and exact calculation 
for the heat-capacity correction versus time for argon at 320 K 
and 5 bar. 
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Fig. 6. Influence of the ratio cc of the volumetric heat 
capacities on the heat-capacity correction in dimensionless 
parameters. 

The influence of the heat-capacity ratio cc on the magnitude and time 
scale of the correction can be deduced from Fig. 6. There a dimensionless 
temperature correction 6T*=(4n).6Tm)/d 1 is plotted versus a Fourier 
number with the wire radius Fo = at/r~,. The lines denote the numerically 
evaluated exact solution for ~=0.001 (solid line), for c~=0.01 (short- 
dashed line), and for co=0.1 (long-dashed line). The smallest c~ is close to 
the conditions at low pressures in gases and shows the largest correction. 
The triangles stand for the Healy correction, and the crosses for the 
modified formula at c~ =0.001. Again, the modified formula approximates 
the exact solution down to smaller times. 

4. AXIAL END EFFECTS 

The thermal diffusivity of a gas increases at low pressures as discussed 
in Section 1. The temperature field expands further out around the hot wire 
in the radial and in the axial direction as well. Therefore, the heat flux in 
the axial direction through the fluid at the ends of the hot wire is growing. 
It is well-known, however, that it can be compensated for by using two 
wires of different length.. Only when the temperature in the middle of the 
short wire deviates from the ideal temperature rise will the compensation 
fail. In order to demonstrate that the compensation works properly for the 
conditions of our long time measurements in argon, we determined the 
time of axial compensation failure tr according to a simple criterion of 
Blackwell 1"16-1. Biackweil gives an estimate of the error of the slope s of 
the temperature rise in the middle of a heated wire which was quoted 
without simplifications by Healy et al. [9].  If the thermal diffusivity of a 
gas at low pressures becomes comparable to that of the wire, the axial heat 
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Table i. Failure Times t r for the Comparison of Axial End Effects in Argon at 320 K 

tf (s) 

Pressure Thermal diffusivity Blackwell Kierkus et al. 
(bar) Ira-'. s - i) [ 16] [ 17] 

2 11.56 x 10-6 1.24 2.0 
5 4.67 x 10-6 3.07 6.0 

losses are dominated by the flux through the fluid and the relative error of 
the slope bs/s can be written 

6s 1 
- -  = erfc(z); s z = 4 w/'-~ (13) 

where I stands for the length of the short wire. The error should be smaller 
than 0.1%; the argument z of the error function complement is then 
~<2.333. For a given length of the short wire the axial end effects will be 
felt earlier the greater the thermal diffusivity of the fluid. The failure times 
tf for our instrument with l =  0.03536 m and the argon measurements at 
320 K are given in Table I. 

At the lowest pressure the breakdown of the axial compensation is 
predicted to occur within the transition to steady state. This is not consis- 
tent with the results of our measurements. Therefore, we used the more 
detailed work of Kierkus et al. [17] to calculate the temperature in the 
middle of the short wire:-' 

AT(r=rw, z=l/2, t)=~z~-gk~ , 8  .= ~-~ (2k-1 1 ) s i n ( 2 k - 1 ) ~  

f~- (1 - exp[ - ( f / +  u2) Fo 
du x Jo (, _, )2 _°, !) 

f l =  2k )Ttrw. ; F O = r ~ ,  f 2 =  - 

[ Yo(u) ~(u) - Jo(u) qJ(u)]. 
f3(u) - ~b'-(u) + ~b2(u) ' (14) 

ok(u)= 2uJ,(u) + ( f,_f , - 2u---~2) Jo(u) 

~b(u) = 2uY,(u) + ( f2 f  t -2z--~-~) Yo(u) 

-" In Eq. (12) of Ref. 17 a factor 2 was missing. Now we get the proper form for the simplified 
case = = 2, which leads to the working equation of the transient hot-wire method. 
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The temperature deviates more than 0.1% from the ideal temperature rise 
at the times tf also included in Table I. According to the work of Kierkus 
et al. [17], the axial compensation breakdown occurs later than estimated 
by Blackwell and does not fail within the transition to steady state. It is 
noteworthy that we are not far away from a significant influence of the 
axial end effects. The simple criterion Eq. (13) of Blackweli includes a safety 
factor of approximately 1.6 and may be used to determine the length of the 
short wire when designing a transient hot-wire cell. 

5. C O N C L U S I O N S  

The experiments revealed a significant influence of the isothermal 
outer boundary at long times in gases at low pressures, whereas natural 
convection dominates the behavior at high pressures. The evaluation of the 
thermal conductivity from the steady-state temperature at low pressures in 
gases seems to be possible. Further work is required to estimate the error 
of such a steady-state measurement. 

Most of the existing transient hot-wire instruments show a significant 
influence of the isothermal outer boundary at pressures between 2 and 
5 bar. The well-known correction could be applied, but in new instruments 
it is recommended to avoid it altogether with a more rigorous design 
criterion. Even with the finest wires the heat-capacity correction is rather 
large. To account for the heat capacity of the wire, a new and more 
accurate formula is given. The axial end effects are growing at low 
pressures but still can be compensated for by using two wires of suitable 
length. A well-known simplified design criterion for the short wire length 
was verified by a numerical study of the wire temperature. For accurate 
thermal-conductivity measurements at low pressures in gases, very fine 
wires in large cells should be used. The measures presented allow extension 
of the range where the transient hot-wire method is applicable toward the 
dilute gas state. 
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